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Abstract—Testing and evaluation of applications over mobile
ad hoc networks is a challenge due to the difficulty of conducting
field experiments and regression test. The common practice
today is to perform such testing in a virtual ad hoc network
testbed before field experiments. Although typical emulated
network testbeds can be instrumented to generate and control
certain network conditions, there is a class of network-aware
applications, including network management systems, that needs
to interact with network elements in order to observe and control
the network behavior. To support testing and evaluation of
such applications, a virtual ad hoc network testbed must allow
monitoring as well as runtime configuration and control of the
virtual network. Moreover, such virtual network testbeds should
i) present a standard-based interface, ii) streamline the testbed
setup process, and iii) not require any code modification to the
application under test. In this paper, we present techniques that
can satisfy the above requirements for a virtual ad hoc network
testbed. An SNMP interface was used to illustrate the automation
of testbed setup for evaluating applications as is.

I. I NTRODUCTION

Testing and evaluation of functional correctness and com-
munications performance of distributed applications over Mo-
bile Ad hoc NETworks (MANETs) pose significant challenges
in both feasibility and scalability. With respect to feasibility,
ad hoc network hardware is often experimental and available
only in small quantities, so conducting evaluation of more than
a few hardware devices is either infeasible or impractical for
cost reasons. With respect to scalability, running large-scale
evaluations of MANETs in a physical terrain is very costly in
terms of logistics, so the number of tests that can be performed
would typically be much less than adequate.

In order to address the aforementioned challenges, vir-
tual MANETs based on simulated or emulated networks are
used for application testing and evaluation. Applications send
packets over virtual MANETs where their network char-
acteristics including packet delivery latency, effective link
bandwidth, packet delivery jitter, etc., are similar to those of
real MANETs. In most cases, a virtual network built using
precise simulation models can provide the desired level of
approximation to address fidelity concerns.

While this approach satisfies the testing and evaluation
needs for applications that are agnostic of network activities
and configurations, other applications, which we categorize
as network-aware applications, need to interact with the
network and/or respond to network configuration changes.
Prominent examples of network-aware applications include:

i) network management applications that monitor network
resources and/or configure network settings, and ii) commu-
nication middleware that adapts its communication strategies
based on the observed network dynamics. Such applications
are becoming more prevalent as MANET applications need to
change their behavior according to the state of the network.

As a result, to enable the execution of network-aware
applications over virtual networks, there is a need to allow ap-
plications to interact with the simulation/emulation at runtime
in order to retrieve information from, and change configuration
settings of, the virtual networks. Furthermore, virtual networks
should expose these monitoring and control capabilities via a
standard-based interface so that applications under test can run
over virtual networks as they do over real networks, without
any code modification. Traditionally, testbeds based on virtual
networks do not support testing and evaluation of network-
aware applications; existing testbeds that provide some form
of interaction with the virtual network are limited by some
of the following: approach generality, approach fidelity, and
requirements on customizing applications under test.

This paper describes testbed technologies supporting the
testing of network-aware applications over virtual MANETs,
based on theVirtual Ad hoc Network (VAN)testbed technol-
ogy [1], designed to enable the construction of testbeds for
functional testing and performance evaluation of distributed
applications over many types of virtual MANETs.

One of the most salient features of a VAN testbed is its
capability to allow testing of unmodified applications running
under their native operating systems. This feature is supported
by hosting applications on virtual machines (VMs) and using
the transparent packet forwarding technology to direct packets
to traverse a simulated network.

In order to provide standard expected interfaces for mon-
itoring and controlling the simulated nodes in the virtual
network, VAN testbeds currently support a subset of SNMP
[2] for read and write access to the simulated node parameters
of the virtual network. An architecture for linking a given
simulation model to an SNMP agent has also been researched
and implemented.

In addition to supporting unmodified network-aware ap-
plications, VAN testbeds also provide a centralized standard
management interface to access parameters of the emulated
network for the purpose of monitoring and steering this
network at run time, enabling highly realistic and controllable



test scenarios.
The rest of the paper is structured as follows. Section II

presents the general architecture of and functionality provided
by a VAN testbed. Section III describes the technologies
that enable management of the emulated network via SNMP
and automated generation of interface code, while Section IV
presents the evaluation of several network-aware applications
in a VAN testbed. In Section V we discuss related work, and
conclude with Section VI.

II. T HE V IRTUAL AD HOC NETWORK (VAN) T ESTBED

TECHNOLOGY

The Virtual Ad hoc Network (VAN) Testbed technology
is designed to allow the testing and evaluation of applications
over MANETs. A VAN testbed places emphasis on: a) support
for executingunmodified applications, i.e., without requiring
code change to accommodate the testbed; b)fidelity–providing
an accurate representation of the network that is virtualized;
and c)scalability of the testbed–enabling a large number of
copies of the same application to execute over the testbed.

In order to provide support for testing unmodified applica-
tions, a VAN testbed provides an environment that is as close
as possible to the real deployment environment. Accordingly,
each application instance executes over its own OS instance,
thus having its own set of environment variables, libraries,
configurations, and file systems.

In order to provide fidelity, the VAN testbed features an
emulated network consisting of a network simulator that exe-
cutes in real-time. The network simulator employs asoftware-
in-the-looptechnique to convert the packets generated by the
applications into simulated packets to pass through the simu-
lated network. The use of a simulated network provides several
advantages over a more abstract network emulator. First,
simulators traditionally offer higher fidelity by simulating the
detail of packet forwarding process as packets travel through
the protocol stacks and from one node to another. Second,
major network simulators usually see a multitude of simulation
models been built for prior simulation studies, thus allowing
a testbed to utilize various models and scenarios, with the
desired degree of fidelity. Third, when simulating a network,
a simulator employs network scenarios containing a collection
of simulated nodes interacting with each other, where each
simulated node implements functionality corresponding to a
real ad hoc node. The existence of simulated nodes provides
an opportunity to the network-aware applications to exercise
monitoring and control functions on the nodes consisting of
the emulated networks.

In order to allow unmodified applications to exchange
packets over a simulated network, the VAN testbed introduces
the concept of asplit stack. In a split stack, as shown in
Fig. 1, the network stack is split into two parts, where the
higher layers of the stack are implemented by the operating
system hosting applications, while the lower layers of the
stack are implemented in the network simulator. In our current
implementation, the stack is split at the IP layer: the transport
layer and packet encapsulation function of the IP layer are
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Fig. 1: The concept of split stack.
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Fig. 2: Architecture of a VAN Testbed and transparent forwarding.

provided by the host OS, while the simulator implements the
rest of the protocol stack1. However, neither the split stack
concept nor our implementation are in any way limited to
splitting at the IP layer (e.g., in [3] the split at the MAC
layer).

This configuration sets up an architecture for forwarding
application-generated IP packets between the upper stack and
the lower stack, as well as for accessing lower stack parameters
for network-aware applications.

While the split stack concept alone allows the execution of
unmodified applications over a simulated network, the testing
and evaluation of large scale applications would require a
prohibitively expensive testbed employing a large number of
corresponding physical hosts. In order to address this issue, the
VAN testbed uses host virtualization, such that multiple VMs
can execute on the limited hardware resource. This technique
allows each instance of the application to execute in a separate
and possibly distinct environment, as provided by a real host
at deployment, to replicate the target network environment.
The upper half of the split stack is thus implemented in the
VMs, while the lower half of the stack is implemented in the
network simulator.

Fig. 2 presents the general architecture of the VAN testbed.
VMs are installed on different physical hosts. The network

1The IP layer present in the simulator consists only of IP Encapsulation
and enables creation of simulated IP packets out of real IP packets.



simulator employs a network scenario consisting ofshadow
nodes, each implementing the lower layers of the stack in
their corresponding VM. Packets generated by an application
are transferred to the simulator and injected in the correspond-
ing shadow node, and transformed into simulated packets.
Subsequently the simulated packets are forwarded to their
destination, according to the simulation scenario. Finally, the
packets are transformed into real packets and transferred to the
destination VM and its corresponding application. The testbed
employs aPacket Routermodule present on each physical host
and aCosimulator Moduleloaded within the same process as
the network simulator. The Packet Router is responsible for
transferring the IP packets between the VMs and the simulator
process with a low overhead. The Cosimulator is responsible
for, among others, the transformation between real packets and
simulated packets, as well as the control of simulation speed
and synchronization with real time. More detail on the general
architecture of VAN testbeds can be found in [1].

Network Simulator and Models: Currently, VAN testbeds
offer support for the OPNET Modeler [4] models; support
for QualNet [5] is under development. The VAN testbed
technologies have been designed to bemodel-neutral, i.e.
support the execution of third-party models with little or no
manual conditioning. In order to be executed in a VAN testbed,
a model should implement the lower half of the split IP stack,
including a mobile network layer responsible for end-to-end
packet forwarding. So far we have experimented with different
TDMA/OFDMA network implementing mobile network and
mobile link layers, using both unicast and broadcast traffic.

Virtualization Details: VAN testbeds use Xen-based host
virtualization. Xen [6] is an open-source paravirtualization
method which provides an abstraction layer that allows a
physical host to execute one or more VMs, effectively de-
coupling the OS and its applications from the underlying
physical machine. Xen currently supports a wide range of
OSs including Linux, Solaris, BSD variants, and Windows
(unmodified), on several mainstream CPU architectures.

III. SUPPORT OF NETWORK-AWARE APPLICATIONS

Unlike many applications that treat the network as an
opaque medium of communication, network-aware application
require specific information from the network; network-aware
applications can interact with a network in multiple ways: in
addition to communicating over the network, they can probe
network status at various points, monitor and reconfigure net-
work devices. Consequently, a testbed that supports network-
aware applications should provide integrated capabilities for
both communicating through an emulated network and ob-
taining or changing network state. These two capabilities are
inextricably linked. E.g., adaptive middlewares in ad-hoc net-
works can detect signal quality, errors, and congestion present
at radio interfaces and consequently change transmission rates;
as a result of this adaptation, the same observed parameters
could change their value in the presence of modified load.
Also, network management applications can detect congestion
based on latency and drop rates reported at the communication

endpoints, and consequently change queuing policies. As a
result, the experienced latency and drop rates will change
accordingly. A testbed based on an emulated network should
model this interdependency as closely as possible.

In traditional networks, important network management
activities usually occur only at a small subset of the nodes
that compose the network. This is not the case, however for
MANETs, where every node in the network engages in routing
and forwarding activities. As a consequence, in such networks,
management activities have to take place at every single node,
in coordinated fashion. From an emulated testbed perspective,
it follows that every network-aware application executing on
such testbed should have access to corresponding parameters
implemented in the emulated network. Following the split
stack model shown in Fig. 1, the application, executing in
a real environment should have access to parameters imple-
mented in the lower, i.e. simulated, stack of the protocol. We
call such parameterslower stack parameters.

One of the main objectives of our work is to enable applica-
tions to execute over the VAN testbed as in a real environment,
with no modifications. Accordingly, various network-aware
applications should access and control the network through
the same interfaces as provided in a real environment. In
order to support such capability, the VAN testbed provides
access to lower stack parameters using SNMP. SNMP had
been selected since it represents the still de-facto standard
for network management, and the majority of the network-
aware applications executing on top of the testbed are network
management applications. However, as we shall see, the tech-
nology we use for accessing lower stack parameters can be
easily apply to other types of interaction.

A. Lower stack management architecture

The VAN testbed provides every application running on a
VM with standard SNMP interfaces for accessing lower stack
parameters implemented in the shadow node. Fig. 3 shows
the corresponding interaction between an application and the
simulated network, and the pertaining modules.

Every VM in a VAN testbed hosts a special SNMP agent,
calledSimSNMP agentthat exposes standard interfaces for ac-
cessing available parameters. Every SNMP request to a lower
stack parameter is transferred to the simulator process where it
is handled and the results are returned to the SimSNMP agent
and subsequently to the application.

The SimSNMP agent is implemented using Net-SNMP [7],
a widely used open source package available for most major
operating systems. The communication between the Sim-
SNMP agent and the simulation process is carried out through
CORBA calls, facilitating automatic adaptation for different
parameters available on different network models. The fol-
lowing is the sequence of steps for accessing a lower stack
parameter:

• Application issues an SNMPGET or SET request for a
parameterx identified by its SNMP object identifier.

• An SimSNMP agent receives the request and invokes
a custom Agent Module responsible for serving the
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Fig. 3: Access to simulated stack parameters.

Management Information Base (MIB)2 containingx. The
custom Agent Module is a loadable agent module gen-
erated specifically for serving the lower stack parameters
provided to the application.

• The custom Agent Module performs a CORBA request
get X or set X by calling a corresponding stub method;
stub methods are automatically generated for all lower
stack parameters provided in the MIB. The CORBA
request contains a shadow node identifier convenient for
the simulation model (e.g., node number or IP address).
Additional parameters are also supplied, e.g., indices (if
request refers to a table), and values forSET.

• The CORBA request is received by theLower Stack
Management Servant object which, as part of the Cosim-
ulator Module, resides in the same address space with the
simulator process.

• The Lower Stack Management Servant calls a skeleton
methodget Ximpl or set Ximpl supplied by the net-
work model, which implements read or write access to the
parameter. These methods are responsible for identifying
the shadow node, the parameter (and its index, if needed)
and contain the logic for reading/writing the parameter.

• Once the request has been satisfied, the response and its
corresponding value, are returned to the SimSNMP agent
via CORBA and subsequently to the application.

The VAN testbed has been designed to be as general as
possible, supporting various network models. More precisely,
the testbed should bemodel-neutral, i.e. support the execu-
tion of third-party network models with little or no manual
conditioning. While the parameters provided to the applica-
tions, their data types, and actual access implementation are
dependent on the actual network model, the infrastructure for
providing SNMP access for unmodified network-applications
executing in the VMs should be a highly automated process.
Such automated process can thus minimizing the time and

2A MIB is a module containing a collection of objects, or parameters, used
to manage entities in a network.

effort required to test and evaluate a new application over a
new, possibly third party, network model.

Next, we discuss the process of instrumenting a VAN
testbed to support a new network-aware application and new
network model for access to lower stack parameters.

B. Assumptions on the instrumentation developer

On the application side, we assume that the application
developer is familiar with the basic SNMP concepts and a
client-side SNMP library, and can, by herself or with the the
help of model developers, identify the relevant management
variables and encode them in a valid experimental SNMP
MIB definition in ASN.1 (or obtain a standard MIB definition
that covers the relevant functionality). We do not assume any
knowledge of agent-side SNMP development, and the tools
we developed completely obviate the need for such expertise.

On the model side, we assume that the model instrumen-
tation developer is familiar with the simulator APIs to be
able to identify, read and write the values of instrumented
stack parameters. We do not assume any knowledge of the
co-simulation mechanisms or CORBA.

C. Generating a SimSNMP agent module and model instru-
mentation for SimSNMP

Once a semantically acceptable and syntactically valid MIB
definition is produced or obtained, the VAN testbed tools
generate the model instrumentation prototypes and access
mechanisms for SNMP as illustrated in Fig. 4. The process
is naturally divided into two parts, agent side and model side.
In the Fig., blue rectangles denote the tools provided the VAN
testbed technologies, green rectangles identify third-party au-
tomation tools, white punch-card icons denote specifications
in standard notation (ASN.1 and CORBA Interface Definition
Language (IDL)), rounded white boxes indicate intermediate
generation products, patterned blue boxes show generic code
supplied by the VAN testbed technologies and the rounded red
box denotes the model instrumentation prototype.

First, theMIB to IDL translator is executed on the MIB
definition to generate an IDL interface specification (Step 1 in
the Fig.). This step is common to both the agent side and the
model side. The translator is implemented with [8], [9].

The IDL consists of a single module per MIB group and,
for each variablex contains the definition of the corresponding
getX and/orsetX functions. The first argument to these func-
tions is always the node identifier, other parameters include
the value (forsetX functions) and indices (for table entries).
The IDL also includes some generic support functions, most
notably functions to obtain information to initialize the Sim-
SNMP agent module in general and SNMP tables in particular.

Next, on the model side, the IDL compiler of the object
request broker (ORB) compatible with the simulator language
is executed (e.g., omniORB [10] in our current implementation
for OPNET) to produce the model-side stubs for the IDL
functions and the model-side server skeleton (Step 2).

Continuing on the model side, theModel instrumentation
prototype generatoris used to parse the model-side stubs and
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Fig. 4: Generation of a SimSNMP agent module and model instrumentation prototype for use with the module.

generate the corresponding model instrumentation function
prototypes for eachgetX and setX function (Step 3). The
generator also modifies the model build specification (e.g., a
makefile) to compile and link in the generated prototype code.

Next, the CORBA servant generatoris used to combine
a generic CORBA servant implementation (using CORBA
Naming Service) with the generated stub and skeleton defi-
nitions to produce a CORBA servant (Step 4). This involves
source code generation, compilation and linking. At this point,
the model instrumentation developers can start filling in the
implementation of the model instrumentation functions.

The process on the agent side starts with the initial MIB
definition, and the third-party SNMP agent module generation
tool (e.g., mib2c from Net-SNMP) is used to produce a
SimSNMP agent module prototype (Step 5).

Next (Step 6), the IDL compiler for an ORB compatible
with the agent implementation tools (e.g., ORBit2 [11] in our
current implementation with Net-SNMP) is used to generate
the agent-side (client-side) CORBA stubs from the IDL inter-
face definition generated in Step 1.

Finally, the SimSNMP agent module generatorprovided
with the VAN testbed technologies is used to combine a
generic CORBA client implementation (using CORBA Nam-
ing Service), the agent-side CORBA stubs and the Sim-
SNMP agent prototype to produce a complete SimSNMP
agent module operating as a CORBA client according to the
IDL specification (Step 7). The generic client implementation
includes initialization code for the SimSNMP module, most

notably code to initialize SNMP agent module structures.

D. Instrumenting the simulation model

The model instrumentation developer can now use the
familiar simulator API and programming language to imple-
ment the access functions for the generated prototypes. The
implementation is then automatically linked with the model
when the model is compiled.

Implementing access functions is model dependent and
parameter dependent. In the simple case, such implementation
can just access a global variable or function defined elsewhere
in the simulation. In more complicated cases, when parameter-
related information is based on event contexts, the implementa-
tion should employ asynchronous interactions with the model
for generating events. We provide such simulator-dependent
helper routines, but do not describe them here.

E. Challenges and limitations

The implementation of the SimSNMP agent attempted to
follow the back-bone capabilities provided by Net-SNMP. Ac-
cordingly, The SimSNMP agent provides access to theGET,
SET, GETNEXT operations, andBULK operations via Net-
SNMP’s dynamic translation of bulk requests into sequences
of non-bulk operations in the agent. Support for traps and more
efficient bulk transfer will be added in the future.

The implementation of the SimSNMP agent posed a number
of challenges. Given the hybrid nature of VAN testbeds,
where the applications execute on VMs while the network



is represented by a simulation process, there is a mismatch
between the lifespan of the simulated network and that of VMs
and their corresponding SimSNMP agents. Network scenarios
are usually short lived, especially during the testing phase of
an application, while the VMs and the applications tend to
span multiple simulations. In order to minimize the preparation
time for an given scenario, the SimSNMP agent had been built
with the capability to initialize its data structures automati-
cally, every time a new simulation model is executed. Such
initialization takes care of possible different VM-to-shadow
node mapping, different node-specific parameters available as
a result of changing scenarios (e.g., change in number of radio
devices available to the node).

F. The Wizard MIB

In addition to the MIBs required by the network-aware
application executing on the testbed, the SimSNMP agent
can also implement a so called Wizard MIB. This MIB can
contain parameters required to steer the behavior of individual
nodes and overall simulation for facilitating testing and debug
activities. Examples of operations carried out through the
Wizard MIB are the change of nodes coordinates, as well
as the introduction of failures at various nodes at runtime.
The parameters available through a Wizard MIB are only
designed to be visible to the administrator or the operator of
the testbed, and not to the application under testing. In general,
Wizard MIB parameters could be: a) parameters not necessary
to network-aware applications, b) parameters not reflected in
the real network but a byproduct of modeling the network,
or c) parameters used for injecting events (controlled errors,
faults) in the simulated network. Wizard MIB parameters are
implemented using the same mechanism described above.

IV. EVALUATION

In order to evaluate the scalability of the VAN testbed with
respect to the management of lower stack parameters, we have
measured the latency of the SNMP requests issued against
a large number of SimSNMP agents. In this experiment,
we have launched between 40 and 1280 SimSNMP agents
deployed in 10 Fedora Core (FC) 8 VMs running on 2 Dell
Poweredge 1950 blades, under FC8 Xen Dom0. The choice of
10 VMs/1280 agents was was driven by available resources;
latency values obtained in the setup indicate worse perfor-
mance than that expected in the realistic single agent/VM case
because of the overhead of context switching on a VM. The
agents communicated with an instrumented OPNET model
running on a separate Dell desktop. All physical machines
were connected via a dedicated Gigabit Ethernet LAN. ORBit2
was used on the CORBA client, and OMNIOrb 4 on the
CORBA server side.

For each SimSNMP agent we have launched a companion
SNMP client that issued an SNMPGET request from the
command line to the corresponding agent every second. The
variables polled were 32-bit integers and octet strings of length
128, stored in scalars and tables, with the types split equally
between 4 possible combinations. EachGET request contained

a single SNMP varbind. In the simulation process, the values
of the requested parameters were periodically computed and
cached, independent of the polling.

We have measured the mean end-to-end latency of the
SNMP requests at the SNMP client withtime(1), over all
requests and clients. The results are presented in Fig. 5. Note
that the latency varies relatively little with the number of
agents and remains small (747µs per request) even with 1280
agents. The standard deviation varied between 990µs (1280
agents) and 1100µs (40 agents) for a data set size of more
than 2 million samples, giving us a 95% confidence level at
5% accuracy.

Additionally, we measured the CORBA-specific component
of the end-to-end latency, which remained fairly constant as
the number of agents increased (392µs per request with 40
agents, stdev of 623µs cf. 360 µs per request with 1280
agents, stdev of 521µs). Thus, CORBA latency represents
about half of the overall latency for the 1280 agent case.

The bandwidth usage of the SNMP-induced traffic varied
linearly between 80 Kbps (40 agents) and 2.4 Mbps (1280
agents). We have also observed that the CPU utilization of the
simulation process was relatively constant, and independent of
the number of issued SNMP requests, due to the low overhead
of the access functions to cached parameters.

Fig. 5: Measured Latency of SimSNMP Acccesses for Scalability.

In order to empirically assess the usefulness and soundness
of the VAN testbed for managing lower stack parameters, we
have evaluated a number of network management applications:
DRAMA, IFC, MPT, and OpenNMS[12].

DRAMA (Dynamic Re-Addressing and Management for the
Army)[13] represents a policy-based MANET management
system. DRAMA is composed of autonomous agents execut-
ing on, and managing each mobile node according to a set of
policies. In order to evaluate DRAMA over a VAN testbed, we
used a simulated MANET of 49 nodes. The testbed had been
configured to execute on 7 physical machines, each hosting 7
VMs, all under FC8. Each VM has been configured to execute
a DRAMA agent that periodically monitored several physical
and link layer parameters (e.g., SNR, Slot Error Rate) provided
by the SimSNMP agent.

IFC (Integrated Fault Correlator) represents a network man-
agement application designed to detect faults in the network
and provide accurate diagnostics. We have executed IFC on



a 10 node scenario. Each node polled more than 20 param-
eters in the simulated stack every second (mostly interface
traffic statistics, i.e., packet counts, discards, in/out errors, and
queue occupancies). In addition, each IFC instance exchanged
information with the other instances to assess end-to-end
connectivity, and to exchange and correlate collected informa-
tion. IFC testing demonstrated adequate testbed performance
in the presence of medium-to-high traffic loads induced by
VM-hosted applications. This evaluation also helped uncover
shortcomings in the implementation when inter-IFC reporting
of congestion was itself affected by congestion.

MPT (Mission To Policy Translator) represents a network
management software designed to configure/reconfigure the
network according to mission plans and take into account
actual network conditions. We have tested the MPT in a
10 node scenario, where MPT polled (link state) routing
information from the mobile network layer, as well as radio
interface status, both available from the lower layer of the
split stack via a SimSNMP agent. In addition to monitoring,
the MPT also assigned gateways and changed the administra-
tive status of radio interfaces on active, passive, or disabled
gateways for the purpose of increasing the reliability margins
of the topology. These operations used SNMPSET via the
SimSNMP agent, and the results of the reconfigurations were
subsequently experienced by the MPT and other concurrently
running applications.

OpenNMS [12] is an enterprise grade network management
system. We used it to collect more that 25 parameters on
each node in a 10 node scenario. In this set of tests, a single
OpenNMS instance was used to collect information from
all the other nodes in the emulated network. Consequently,
each SNMPGET request had been propagated through the
emulated network, as in a real network; at the destination, the
request was handled by the SimSNMP agent and the data was
collected from the lower layers of the split stack, accurately
modeling the OTA SNMP transfer and local data retrieval
from the model. In addition to collecting information from the
simulated stack, the same SimSNMP agent was used to collect
VM-specific information, proving the ability of the agent to
manage both upper and lower parts of the split stack.

V. RELATED WORK

Prior work applicable to functional testing and performance
evaluation of distributed software systems can be roughly
divided into the following categories by the characteristics of
the approaches:

• Specialized network testbeds: This type of approaches
addresses testing a network consisting of some specific
hardware and/or software components (e.g., radios and/or
OSs). Some approaches allow the use of real distributed
systems for testing (e.g., [14], while others only allow
models for a specific network simulator to be used as
test targets ([15]). The VAN testbed approach aims to be
as generic as possible with respect to simulators, models,
and OSs/applications.

• Full network emulation : An emulated network, from
the viewpoint of packet forwarding, introduces various
conditions, e.g., packet loss, delay, jitter. When a network
is “emulated”, both the packet forwarding process and
network protocol interactions are neither real nor being
modeled as stepwise transitions using finite state ma-
chines reflecting actual protocols. Often, protocol stack
interactions are modeled by programs offering simple,
abstracted behaviors, e.g., a packet entering the emulated
network is either regarded as dropped along the route, or
delivered to its destination node after certain delay, with
or without error. To use emulated network for testing and
evaluation of real distributed software, packets generated
by real software must be “injected” into the emulated
network as if routed into a real network. [16], [17], [18],
[19], [20], [21] provide examples of network emulation
designs. A high level of abstraction in full network
emulation approaches typically restricts their use with
network-aware applications.

• Hybrid network simulation : These types of approaches
split the network protocol stack simulation onto two dif-
ferent machines and provide a mechanism that creates a
virtual network that behaves identically to a real network
from the perspective of real applications. A good example
is [22]. Our approach is of this type.

More recently, significant work has been done on complete
testbed technologies that allow a user to combine generic
network emulation/hybrid simulation with real OS and appli-
cation code, most notably in [23], [24]. Detailed feature and
performance comparison of the VAN testbed approach with
these technologies is beyond the scope of this paper; neither
includes support for for network-aware applications described
in this paper. Limited support for setting parameters of the
lower layers of a split stack is provided in [3]; however, their
approach is lazy (depends on data sent), insufficiently general
(addresses only writing parameter values), has high overhead
(piggibacks on every data packet), and does not automate
instrumentation of arbitrary simulation models.

Several existing mature and evolving network emulation
tools include some level of support for software-in-the-loop
or system-in-the-loop emulation, particularly [25], [26], [27].

Typically, the transparent IP packet forwarding functionality
is exposed via an Ethernet-like network interface, and the
user is expected to set up routing into the emulated network.
Similarly to the complete testbeds mentioned above, emulation
is restricted to real time, and no user-friendly facility is
provided for applications to interact with the part of the node
network stack implemented in the emulation. [28] provides
simulated SNMP agents that execute in the simulator, as part
of the lower-layer simulated stack. These SNMP agents are
able to respond to a small subset of SNMP requests gener-
ated from outside of the simulation. Although this approach
provides basic support for some applications, it cannot cope
with applications that require full SNMP support, e.g., [12].
Furthermore, execution of all the SNMP agents corresponding
to all the nodes in a single centralized process (i.e. the



simulator) does not scale well, given that the computational
and memory footprint of a full SNMP agent is non-negligible.

Note that all existing emulation tools do expose lower-
level APIs for interacting with the emulated stack components,
and the current VAN testbed functionality is built on top of
such APIs for OPNET. However, the low-level APIs are very
specific to a tool, require a considerable effort to learn and
configure for the required fidelity, and do not, by themselves,
provide a complete bridge between an unmodified network-
aware application and the emulated stacks useful to a tester.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described an important class ofnetwork-
aware applications, of which network management systems
are a primary example, that interact with several layers of the
network stack in every network node. To support large-scale
testing and evaluation of unmodified network-aware applica-
tions, we have enhanced our VAN testbed technology with
the capability of instrumenting the underlying network model
parameters for management access via standard management
interfaces (presently SNMP, but not in any way limited to it).

We presented a detailed design of the lower stack man-
agement mechanism, wherein the unmodified network-aware
application uses a special SNMP agent module,SimSNMP
to read and write lower stack parameters while the module
marshals and forwards corresponding requests/results to/from
the instrumentation in the simulation models.

Further, we described a set of tools that automatically gen-
erate bothSimSNMPmodules and the model instrumentation
prototypes from a single MIB specification. The automated
process obviates the need for SNMP server-side knowledge by
the developers and significantly shortens development cycles.

Additionally, we described a similar instrumentation ap-
proach for local and global simulation model control via
a Wizard MIB that allows introduction of changes (e.g.,
faults) into a running simulation via a standard management
interface (again, SNMP); the Wizard MIB module and model
instrumentation prototypes are also generated automatically.

We have successfully evaluated several different network-
aware applications on two VAN testbeds using the new tech-
nology, presented qualitative results of its scalability, and iden-
tified important constraints and limitations of the approach.
The VAN testbed technology is under active development,
and our planned work in the area of local lower stack
management includes adding support for SNMP traps (asyn-
chronous agent-to-manager communication), NETCONF [29],
and Linux/BSD-stylesysctl interfaces, and performance im-
provements and evaluation with more hardware.
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