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Abstract—Testing and evaluation of applications over mobile i) network management applications that monitor network
ad hoc networks is a challenge due to the difficulty of conducting resources and/or configure network settings, and ii) commu-
field experiments and regression test. The common practice nication middleware that adapts its communication strategies

today is to perform such testing in a virtual ad hoc network . .=
testbed before field experiments. Although typical emulated P2S€d On the observed network dynamics. Such applications

network testbeds can be instrumented to generate and control &ré becoming more prevalent as MANET applications need to
certain network conditions, there is a class of network-aware change their behavior according to the state of the network.
applications, including network management systems, that needs As a result, to enable the execution of network-aware
to interact with netwprk elements in order_ to observe and c_ontrol applications over virtual networks, there is a need to allow ap-
the network behavior. To support testing and evaluation of ™ . - . . . . .

such applications, a virtual ad hoc network testbed must allow pllcanons to m_tera(_:t with the simulation/emulation at_runtlr_ne
monitoring as well as runtime configuration and control of the N order to retrieve information from, and change configuration
virtual network. Moreover, such virtual network testbeds should settings of, the virtual networks. Furthermore, virtual networks

i) present a standard-based interface, ii) streamline the testbed should expose these monitoring and control capabilities via a
setup process, and i) not require any code modification to the gtanqard-hased interface so that applications under test can run

application under test. In this paper, we present techniques that irtual network thev d | network ithout
can satisfy the above requirements for a virtual ad hoc network over virtual networks as they do over real networks, withou

testbed. An SNMP interface was used to illustrate the automation any code modification. Traditionally, testbeds based on virtual
of testbed setup for evaluating applications as is. networks do not support testing and evaluation of network-
aware applications; existing testbeds that provide some form
of interaction with the virtual network are limited by some
Testing and evaluation of functional correctness and comf the following: approach generality, approach fidelity, and
munications performance of distributed applications over Moequirements on customizing applications under test.
bile Ad hoc NETworks (MANETS) pose significant challenges This paper describes testbed technologies supporting the
in both feasibility and scalability. With respect to feasibilitytesting of network-aware applications over virtual MANETS,
ad hoc network hardware is often experimental and availatilased on thé&virtual Ad hoc Network (VAN}estbed technol-
only in small quantities, so conducting evaluation of more thaygy [1], designed to enable the construction of testbeds for
a few hardware devices is either infeasible or impractical féunctional testing and performance evaluation of distributed
cost reasons. With respect to scalability, running large-scapplications over many types of virtual MANETS.
evaluations of MANETS in a physical terrain is very costly in One of the most salient features of a VAN testbed is its
terms of logistics, so the number of tests that can be performeapability to allow testing of unmodified applications running
would typically be much less than adequate. under their native operating systems. This feature is supported
In order to address the aforementioned challenges, Vay hosting applications on virtual machines (VMs) and using
tual MANETs based on simulated or emulated networks atige transparent packet forwarding technology to direct packets
used for application testing and evaluation. Applications seia traverse a simulated network.
packets over virtual MANETs where their network char- In order to provide standard expected interfaces for mon-
acteristics including packet delivery latency, effective linikoring and controlling the simulated nodes in the virtual
bandwidth, packet delivery jitter, etc., are similar to those ofetwork, VAN testbeds currently support a subset of SNMP
real MANETSs. In most cases, a virtual network built using?] for read and write access to the simulated node parameters
precise simulation models can provide the desired level of the virtual network. An architecture for linking a given
approximation to address fidelity concerns. simulation model to an SNMP agent has also been researched
While this approach satisfies the testing and evaluati@amd implemented.
needs for applications that are agnostic of network activitiesIn addition to supporting unmodified network-aware ap-
and configurations, other applications, which we categoripéications, VAN testbeds also provide a centralized standard
as network-aware applicationsneed to interact with the management interface to access parameters of the emulated
network and/or respond to network configuration changesetwork for the purpose of monitoring and steering this
Prominent examples of network-aware applications includeetwork at run time, enabling highly realistic and controllable
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test scenarios.

The rest of the paper is structured as follows. Section Il
presents the general architecture of and functionality provided appiceton
by a VAN testbed. Section Il describes the technologies Tep/UDP
that enable management of the emulated network via SNMP
and automated generation of interface code, while Section IV
presents the evaluation of several network-aware applications
in a VAN testbed. In Section V we discuss related work, and
conclude with Section VI.

Il. THE VIRTUAL AD HOC NETWORK (VAN) TESTBED
TECHNOLOGY Network Simulator

The Virtual Ad hoc Network (VAN) Testbed technology
is designed to allow the testing and evaluation of applications
over MANETS. A VAN testbed places emphasis on: a) support
for executingunmodified applicationsi.e., without requiring
code change to accommodate the testbefipgb)ity—providing
an accurate representation of the network that is virtualized,
and c) scalability of the testbed—enabling a large number of
copies of the same application to execute over the testbed.

In order to provide support for testing unmodified applica-
tions, a VAN testbed provides an environment that is as close
as possible to the real deployment environment. Accordingly,
each application instance executes over its own OS instance,
thus having its own set of environment variables, libraries,
configurations, and file systems.

In order to provide fidelity, the VAN testbed features an
emulated network consisting of a network simulator that exe=ig. 2: Architecture of a VAN Testbed and transparent forwarding.
cutes in real-time. The network simulator employsoftware-
in-the-looptechnique to convert the packets generated by the | . i i
applications into simulated packets to pass through the sinfjovided by the host OS, while the simulator implements the
lated network. The use of a simulated network provides sevef§ft of the protocol stack. However, neither the split stack
advantages over a more abstract network emulator. Fif§gnCePt nor our implementation are in any way limited to
simulators traditionally offer higher fidelity by simulating theSPlitting at the IP layer (e.g., in [3] the split at the MAC
detail of packet forwarding process as packets travel throu er). , , i i
the protocol stacks and from one node to another. SecondTh'S configuration sets up an architecture for forwarding

major network simulators usually see a multitude of simulatigiPPlication-generated IP packets between the upper stack and
models been built for prior simulation studies, thus allowin§!€ 10Wer stack, as well as for accessing lower stack parameters

a testbed to utilize various models and scenarios, with t nﬁtlworr]k-aw?re apEIications. I i o o of
desired degree of fidelity. Third, when simulating a network, " 'i_t € sp Ilt' stack concept a}on:a allows t ekexicutlonp
a simulator employs network scenarios containing a collectigfymodified applications over a 5|mu_ate_d network, the testing
of simulated nodes interacting with each other, where ea@fd €valuation of large scale applications would require a

simulated node implements functionality corresponding to P§Chibitively expensive testbed employing a large number of

real ad hoc node. The existence of simulated nodes provi&é)gresponding physical hosts. In order to address this issue, the

an opportunity to the network-aware applications to exerciAN testbed uses host virtualization, such that multiple VMs

monitoring and control functions on the nodes consisting Gfn execute.on the limited hard.vvar'e resource. Th,'s technique
the emulated networks allows each instance of the application to execute in a separate

In order to allow unmodified applications to exchang@nd possibly distinct environment, as provided by a real host

packets over a simulated network, the VAN testbed introduc@k deployment, to repllcaFe the target ne_twork environment.
the concept of asplit stack In a split stack, as shown in | N€ UPPer half of the split stack is thus implemented in the

Fig. 1, the network stack is split into two parts, where th¥Ms, while the lower half of the stack is implemented in the

higher layers of the stack are implemented by the operatiﬂ'g:it"_\’Ork simulator. h | archi f1h bed
system hosting applications, while the lower layers of the Fig. 2 presents the general architecture of the VAN testbed.

stack are implemented in the network simulator. In our curre}ﬂws are installed on different physical hosts. The network

implementation, the stack is S.pllt at th? IP layer: the transporﬁThe IP layer present in the simulator consists only of IP Encapsulation
layer and packet encapsulation function of the IP layer a#igd enables creation of simulated IP packets out of real IP packets.

Fig. 1: The concept of split stack.
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simulator employs a network scenario consistingsbhdow endpoints, and consequently change queuing policies. As a
nodes each implementing the lower layers of the stack iresult, the experienced latency and drop rates will change
their corresponding VM. Packets generated by an applicatiaocordingly. A testbed based on an emulated network should
are transferred to the simulator and injected in the correspomdedel this interdependency as closely as possible.
ing shadow node, and transformed into simulated packetsin traditional networks, important network management
Subsequently the simulated packets are forwarded to thadtivities usually occur only at a small subset of the nodes
destination, according to the simulation scenario. Finally, thieat compose the network. This is not the case, however for
packets are transformed into real packets and transferred toM®NETS, where every node in the network engages in routing
destination VM and its corresponding application. The testbedd forwarding activities. As a consequence, in such networks,
employs aPacket Routemodule present on each physical hognanagement activities have to take place at every single node,
and aCosimulator Moduldoaded within the same process a coordinated fashion. From an emulated testbed perspective,
the network simulator. The Packet Router is responsible fibrfollows that every network-aware application executing on
transferring the IP packets between the VMs and the simulasurch testbed should have access to corresponding parameters
process with a low overhead. The Cosimulator is responsititeplemented in the emulated network. Following the split
for, among others, the transformation between real packets atack model shown in Fig. 1, the application, executing in
simulated packets, as well as the control of simulation speadeal environment should have access to parameters imple-
and synchronization with real time. More detail on the generalented in the lower, i.e. simulated, stack of the protocol. We
architecture of VAN testbeds can be found in [1]. call such parametelswer stack parameters

Network Simulator and Models: Currently, VAN testbeds  One of the main objectives of our work is to enable applica-
offer support for the OPNET Modeler [4] models; supportions to execute over the VAN testbed as in a real environment,
for QualNet [5] is under development. The VAN testbeavith no modifications. Accordingly, various network-aware
technologies have been designed to rhedel-neutral i.e. applications should access and control the network through
support the execution of third-party models with little or naghe same interfaces as provided in a real environment. In
manual conditioning. In order to be executed in a VAN testbedrder to support such capability, the VAN testbed provides
a model should implement the lower half of the split IP staclaccess to lower stack parameters using SNMP. SNMP had
including a mobile network layer responsible for end-to-enoeen selected since it represents the still de-facto standard
packet forwarding. So far we have experimented with differefar network management, and the majority of the network-
TDMA/OFDMA network implementing mobile network andaware applications executing on top of the testbed are network
mobile link layers, using both unicast and broadcast traffic. nanagement applications. However, as we shall see, the tech-

Virtualization Details: VAN testbeds use Xen-based hoshology we use for accessing lower stack parameters can be
virtualization. Xen [6] is an open-source paravirtualizatiorasily apply to other types of interaction.
method which provides an abstraction layer that allowséfl Lower stack management architecture
physical host to execute one or more VMs, effectively de-’ 9
coupling the OS and its applications from the underlying The VAN testbed provides every application running on a
physicai machine. Xen Currentiy Supports a wide range MM with standard SNMP interfaces for aCCGSSing lower stack
OSs including Linux, Solaris, BSD variants, and WindowBarameters implemented in the shadow node. Fig. 3 shows
(unmodified), on several mainstream CPU architectures. the corresponding interaction between an application and the

simulated network, and the pertaining modules.

[Il. SUPPORT OF NETWORKAWARE APPLICATIONS Every VM in a VAN testbed hosts a special SNMP agent,
Unlike many applications that treat the network as a#fl/ledSIMSNMP agerthat exposes standard interfaces for ac-
opaque medium of communication, network-aware applicati¢gssing available parameters. Every SNMP request to a lower
require specific information from the network; network-awarétaCk parameter is transferred to the simulator process where it
applications can interact with a network in multiple ways: ifs handled and the results are returned to the SImSNMP agent

addition to communicating over the network, they can prot#d subsequently to the application.

network status at various points, monitor and reconfigure net-The SINSNMP agent is implemented using Net-SNMP [7],
work devices. Consequently, a testbed that supports netwodkwidely used open source package available for most major
aware applications should provide integrated capabilities feperating systems. The communication between the Sim-
both Communicating thi’ough an emulated network and OSNMP agent and the simulation process is carried out through
taining or changing network state. These two capabilities afORBA calls, facilitating automatic adaptation for different
inextricably linked. E.g., adaptive middlewares in ad-hoc nearameters available on different network models. The fol-
works can detect signal quality, errors, and congestion preskiying is the sequence of steps for accessing a lower stack
at radio interfaces and consequently change transmission raf@gameter:

as a result of this adaptation, the same observed parameteks Application issues an SNMBET or SET request for a
could change their value in the presence of modified load. parametei identified by its SNMP object identifier.

Also, network management applications can detect congestion An SIMSNMP agent receives the request and invokes
based on latency and drop rates reported at the communication a custom Agent Moduleresponsible for serving the



Physical Host 1 Physical Host m effort required to test and evaluate a new application over a
VM 1 VM n new, possibly third party, network model.

g Next, we discuss the process of instrumenting a VAN
Application el Application| . .
testbed to support a new network-aware application and new

network model for access to lower stack parameters.

StL{bS

B. Assumptions on the instrumentation developer

. On the application side, we assume that the application
Consnmlﬁmr Lowersmscgrm"agemem developer is familiar with the basic SNMP concepts and a
Parameter Skeletons client-side SNMP library, and can, by herself or with the the

help of model developers, identify the relevant management
variables and encode them in a valid experimental SNMP

MIB definition in ASN.1 (or obtain a standard MIB definition

Shadow Node 1 Shadow Node n that covers the relevant functionality). We do not assume any

Network Simulator knowledge of agent-side SNMP development, and the tools

we developed completely obviate the need for such expertise.

On the model side, we assume that the model instrumen-
tation developer is familiar with the simulator APIs to be

Management Information Base (MB}ontainingx. The able to identify, read and write the values of instrumented
custom Agent Module is a loadable agent module geﬁt_ack parameters. We do not assume any knowledge of the

erated specifically for serving the lower stack parametef§-Simulation mechanisms or CORBA.
provided to the application. C. Generating a SIMSNMP agent module and model instru-
« The custom Agent Module performs a CORBA requestantation for SImSNMP

get X or set X by calling a corresponding stub method,; . . .
stub methods are automatically generated for all Ioweronce a semantically acceptable and syntactically valid MIB

stack parameters provided in the MIB. The CORB,Qeﬁ”ition is produced or obtained, the VAN testbed tools

request contains a shadow node identifier convenient Qﬁ,neratg the model mstrumentatlon .prot_o types and access
echanisms for SNMP as illustrated in Fig. 4. The process

the simulation model (e.g., node number or IP address). o , i s
.9 ?naturally divided into two parts, agent side and model side.
n

Additional parameters are also supplied, e.g., indices ; :
request refers to a table), and values S&T the Fig., blue rectangles denote the tools provided the VAN

. The CORBA request is received by thewer Stack testbed technologies, green rectangles identify third-party au-

Management Servant object which, as part of the Cosh’f?—mation tools, white punch-card icons denote specifications
ulator Module. resides in the same ,address space with {Héstandard notation (ASN.1 and CORBA Interface Definition
simulator proéess Language (IDL)), rounded white boxes indicate intermediate

. The Lower Stack Management Servant calls a Skeletgﬁneration products, patterned blue boxes show generic code
methodget Ximpl or set Ximpl supplied by the net- supplied by the VAN testbed technologies and the rounded red

work model, which implements read or write access to tﬁjé)X denotes the model instrumentation prototype.

parameter. These methods are responsible for identifyiggé':'rSt’ theMIB to IDL translator is executed on the MIB
th

Fig. 3: Access to simulated stack parameters.

the shadow node, the parameter (and its index, if need finition to generate an IDL interface specification (Step 1 in

and contain the logic for reading/writing the parameter. Fig.). This step is common to both the agent side and the

« Once the request has been satisfied, the response an&nﬁgel side. The_ translator_ is implemented with [8], [9).
The IDL consists of a single module per MIB group and,

corresponding value, are returned to the SIMSNMP agent ; : L .
via CORBA and subsequently to the application. for each variable contains the definition of the corresponding

i etX and/orsetXfunctions. The first argument to these func-
The VAN testbed has been designed to be as generalg uhcti ! gu u

ibl fting vari network models. More oreci [l%ﬁs is always the node identifier, other parameters include
POSSIbIE, Supporting various network models. Vore preciseiyy 5o (forsetX functions) and indices (for table entries).
the testbed should bmodel-neutral i.e. support the execu-

The IDL also includes some generic support functions, most

tion of third-party network models with little or no manualnotably functions to obtain information to initialize the Sim-

conditioning. While the parameters provided to the appIiC%’NMP agent module in general and SNMP tables in particular.

tions, their data types, and actual access implementation arRiext. on the model side. the IDL compiler of the object
dependent on the actual network model, the infrastructure p%r : '

- o C quest broker (ORB) compatible with the simulator language
providing SNMP access for unmodified network-application . : : :
executing in the VMs should be a highly automated proce R executed (e.g., omniORB [10] in our current implementation

Such automated process can thus minimizing the time o OPNET) to produce the model-side stubs for the IDL
P 9 aﬂlﬁjmtions and the model-side server skeleton (Step 2).
2A MIB is a module containing a collection of objects, or parameters, used Continuing on the model side, thdodel 'nsmljmentat'on
to manage entities in a network. prototype generatois used to parse the model-side stubs and
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Fig. 4. Generation of a SImMSNMP agent module and model instrumentation prototype for use with the module.

generate the corresponding model instrumentation functiontably code to initialize SNMP agent module structures.

prototypes for eactgetX and setX function (Step 3). The

generator also modifies the model build specification (e.g..Pa Instrumenting the simulation model

makefile) to compile and link in the generated prototype code.The model instrumentation developer can now use the
Next, the CORBA servant generatois used to combine familiar simulator APl and programming language to imple-

a generic CORBA servant implementation (using CORB#/ent the access functions for the generated prototypes. The

Naming Service) with the generated stub and skeleton defiplementation is then automatically linked with the model

nitions to produce a CORBA servant (Step 4). This involvaghen the model is compiled.

source code generation, compilation and linking. At this point, Implementing access functions is model dependent and

the model instrumentation developers can start filling in thgarameter dependent. In the simple case, such implementation

implementation of the model instrumentation functions.  can just access a global variable or function defined elsewhere
The process on the agent side starts with the initial MIBI the simulation. In more complicated cases, when parameter-

definition, and the third-party SNMP agent module generatioalated information is based on event contexts, the implementa-

tool (e.g., mib2c from Net-SNMP) is used to produce ation should employ asynchronous interactions with the model

SIMSNMP agent module prototype (Step 5). for generating events. We provide such simulator-dependent
Next (Step 6), the IDL compiler for an ORB compatibléhelper routines, but do not describe them here.

with the agent implementation tools (e.g., ORBIt2 [11] in our o

current implementation with Net-SNMP) is used to generafe Challenges and limitations

the agent-side (client-side) CORBA stubs from the IDL inter- The implementation of the SINSNMP agent attempted to

face definition generated in Step 1. follow the back-bone capabilities provided by Net-SNMP. Ac-
Finally, the SimSNMP agent module generatprovided cordingly, The SImSNMP agent provides access toGieT,

with the VAN testbed technologies is used to combine SET, GETNEXT operations, anBULK operations via Net-

generic CORBA client implementation (using CORBA NamSNMP’s dynamic translation of bulk requests into sequences

ing Service), the agent-side CORBA stubs and the Simfnon-bulk operations in the agent. Support for traps and more

SNMP agent prototype to produce a complete SimSNMgificient bulk transfer will be added in the future.

agent module operating as a CORBA client according to theThe implementation of the SImSNMP agent posed a number

IDL specification (Step 7). The generic client implementatioof challenges. Given the hybrid nature of VAN testbeds,

includes initialization code for the SIMSNMP module, mosthere the applications execute on VMs while the network



is represented by a simulation process, there is a mismatckingle SNMP varbind. In the simulation process, the values
between the lifespan of the simulated network and that of VMé the requested parameters were periodically computed and
and their corresponding SIMSNMP agents. Network scenarimached, independent of the polling.

are usually short lived, especially during the testing phase ofWe have measured the mean end-to-end latency of the
an application, while the VMs and the applications tend t8NMP requests at the SNMP client witime(1) over all
span multiple simulations. In order to minimize the preparaticequests and clients. The results are presented in Fig. 5. Note
time for an given scenario, the SImMSNMP agent had been biliat the latency varies relatively little with the number of
with the capability to initialize its data structures automatagents and remains small (748 per request) even with 1280
cally, every time a new simulation model is executed. Su@gents. The standard deviation varied between 971280
initialization takes care of possible different VM-to-shadowagents) and 110@s (40 agents) for a data set size of more
node mapping, different node-specific parameters availabletban 2 million samples, giving us a 95% confidence level at
a result of changing scenarios (e.g., change in number of ra8ilh accuracy.

devices available to the node). Additionally, we measured the CORBA-specific component
_ of the end-to-end latency, which remained fairly constant as
F. The Wizard MIB the number of agents increased (392 per request with 40

In addition to the MIBs required by the network-aware@gents, stdev of 623s cf. 360 us per request with 1280
application executing on the testbed, the SIMSNMP ageagents, stdev of 52Ls). Thus, CORBA latency represents
can also implement a so called Wizard MIB. This MIB cambout half of the overall latency for the 1280 agent case.
contain parameters required to steer the behavior of individualThe bandwidth usage of the SNMP-induced traffic varied
nodes and overall simulation for facilitating testing and debuearly between 80 Kbps (40 agents) and 2.4 Mbps (1280
activities. Examples of operations carried out through tragents). We have also observed that the CPU utilization of the
Wizard MIB are the change of nodes coordinates, as wsimulation process was relatively constant, and independent of
as the introduction of failures at various nodes at runtimthe number of issued SNMP requests, due to the low overhead
The parameters available through a Wizard MIB are onlyf the access functions to cached parameters.
designed to be visible to the administrator or the operator of
the testbed, and not to the application under testing. In general,
Wizard MIB parameters could be: a) parameters not necessary
to network-aware applications, b) parameters not reflected in
the real network but a byproduct of modeling the network,
or c) parameters used for injecting events (controlled errors,
faults) in the simulated network. Wizard MIB parameters are
implemented using the same mechanism described above.
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IV. EVALUATION

In order to evaluate the scalability of the VAN testbed with
respect to the management of lower stack parameters, we have
measured the latency of the SNMP requests issued agaifg} 5: Measured Latency of SINSNMP Acccesses for Scalability.

a large number of SIMSNMP agents. In this experiment,

we have launched between 40 and 1280 SImSNMP agents$n order to empirically assess the usefulness and soundness
deployed in 10 Fedora Core (FC) 8 VMs running on 2 Delif the VAN testbed for managing lower stack parameters, we
Poweredge 1950 blades, under FC8 Xen Dom0. The choicehalve evaluated a number of network management applications:
10 VMs/1280 agents was was driven by available resourc@RAMA, IFC, MPT, and OpenNMS[12].

latency values obtained in the setup indicate worse perfor-DRAMA (Dynamic Re-Addressing and Management for the
mance than that expected in the realistic single agent/VM ca&eny)[13] represents a policy-based MANET management
because of the overhead of context switching on a VM. Thystem. DRAMA is composed of autonomous agents execut-
agents communicated with an instrumented OPNET modey on, and managing each mobile node according to a set of
running on a separate Dell desktop. All physical machingslicies. In order to evaluate DRAMA over a VAN testbed, we
were connected via a dedicated Gigabit Ethernet LAN. ORBit&ed a simulated MANET of 49 nodes. The testbed had been
was used on the CORBA client, and OMNIOrb 4 on theonfigured to execute on 7 physical machines, each hosting 7
CORBA server side. VMs, all under FC8. Each VM has been configured to execute

For each SIMSNMP agent we have launched a compan@®RAMA agent that periodically monitored several physical
SNMP client that issued an SNMBET request from the and link layer parameters (e.g., SNR, Slot Error Rate) provided
command line to the corresponding agent every second. Thethe SiImSNMP agent.
variables polled were 32-bit integers and octet strings of lengthlFC (Integrated Fault Correlator) represents a network man-
128, stored in scalars and tables, with the types split equatlgement application designed to detect faults in the network
between 4 possible combinations. E&HT request contained and provide accurate diagnostics. We have executed IFC on

40 80 160 320 640 1280

Number of SImSNMP Agenls




a 10 node scenario. Each node polled more than 20 parame Full network emulation: An emulated network, from
eters in the simulated stack every second (mostly interface the viewpoint of packet forwarding, introduces various
traffic statistics, i.e., packet counts, discards, in/out errors, and conditions, e.g., packet loss, delay, jitter. When a network
gueue occupancies). In addition, each IFC instance exchanged is “emulated”, both the packet forwarding process and
information with the other instances to assess end-to-end network protocol interactions are neither real nor being
connectivity, and to exchange and correlate collected informa- modeled as stepwise transitions using finite state ma-
tion. IFC testing demonstrated adequate testbed performance chines reflecting actual protocols. Often, protocol stack
in the presence of medium-to-high traffic loads induced by interactions are modeled by programs offering simple,
VM-hosted applications. This evaluation also helped uncover abstracted behaviors, e.g., a packet entering the emulated
shortcomings in the implementation when inter-IFC reporting  network is either regarded as dropped along the route, or
of congestion was itself affected by congestion. delivered to its destination node after certain delay, with
MPT (Mission To Policy Translator) represents a network or without error. To use emulated network for testing and
management software designed to configure/reconfigure the evaluation of real distributed software, packets generated
network according to mission plans and take into account by real software must be “injected” into the emulated
actual network conditions. We have tested the MPT in a network as if routed into a real network. [16], [17], [18],
10 node scenario, where MPT polled (link state) routing [19], [20], [21] provide examples of network emulation
information from the mobile network layer, as well as radio  designs. A high level of abstraction in full network
interface status, both available from the lower layer of the emulation approaches typically restricts their use with
split stack via a SImMSNMP agent. In addition to monitoring,  network-aware applications.
the MPT also assigned gateways and changed the administra Hybrid network simulation : These types of approaches
tive status of radio interfaces on active, passive, or disabled split the network protocol stack simulation onto two dif-
gateways for the purpose of increasing the reliability margins ferent machines and provide a mechanism that creates a
of the topology. These operations used SNIEET via the virtual network that behaves identically to a real network
SIimSNMP agent, and the results of the reconfigurations were from the perspective of real applications. A good example
subsequently experienced by the MPT and other concurrently is [22]. Our approach is of this type.
running applications. More recently, significant work has been done on complete
OpenNMS [12] is an enterprise grade network managemdestbed technologies that allow a user to combine generic
system. We used it to collect more that 25 parameters patwork emulation/hybrid simulation with real OS and appli-
each node in a 10 node scenario. In this set of tests, a singgdion code, most notably in [23], [24]. Detailed feature and
OpenNMS instance was used to collect information fromerformance comparison of the VAN testbed approach with
all the other nodes in the emulated network. Consequentlyese technologies is beyond the scope of this paper; neither
each SNMPGET request had been propagated through thecludes support for for network-aware applications described
emulated network, as in a real network; at the destination, timethis paper. Limited support for setting parameters of the
request was handled by the SImMSNMP agent and the data Jeer layers of a split stack is provided in [3]; however, their
collected from the lower layers of the split stack, accurateBpproach is lazy (depends on data sent), insufficiently general
modeling the OTA SNMP transfer and local data retrievdhddresses only writing parameter values), has high overhead
from the model. In addition to collecting information from the(piggibacks on every data packet), and does not automate
simulated stack, the same SImMSNMP agent was used to coligstrumentation of arbitrary simulation models.
VM-specific information, proving the ability of the agent to Several existing mature and evolving network emulation

manage both upper and lower parts of the split stack. tools include some level of support for software-in-the-loop
or system-in-the-loop emulation, particularly [25], [26], [27].
V. RELATED WORK Typically, the transparent IP packet forwarding functionality

_ ) ) ) is exposed via an Ethernet-like network interface, and the

Prior work applicable to functional testing and performancgser is expected to set up routing into the emulated network.

evaluation of distributed software systems can be roughfymilarly to the complete testbeds mentioned above, emulation
divided into the following categories by the characteristics ¢f restricted to real time, and no user-friendly facility is
the approaches: provided for applications to interact with the part of the node
« Specialized network testbedsThis type of approaches network stack implemented in the emulation. [28] provides

addresses testing a network consisting of some specimulated SNMP agents that execute in the simulator, as part

hardware and/or software components (e.g., radios andédrthe lower-layer simulated stack. These SNMP agents are

OSs). Some approaches allow the use of real distributablle to respond to a small subset of SNMP requests gener-
systems for testing (e.g., [14], while others only allovated from outside of the simulation. Although this approach

models for a specific network simulator to be used awovides basic support for some applications, it cannot cope
test targets ([15]). The VAN testbed approach aims to l@th applications that require full SNMP support, e.g., [12].

as generic as possible with respect to simulators, moddisirthermore, execution of all the SNMP agents corresponding

and OSs/applications. to all the nodes in a single centralized process (i.e. the



simulator) does not scale well, given that the computationa8] T. Braun, T. Staub, and R. Gantenbein, “VirtualMesh: An Emulation

and memory footprint of a full SNMP agent is non-negligible. ~ Framework for Wireless Mesh Networks in OMNeT++," Proc. of
.. . OMNeT++ 2009 (SIMUTools 20092009.
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and the current VAN testbed functionality is built on top of[5] Scalable Network Technologies, “QualNet,” 2009. [Online]. Available:

http://www.scalable-networks.com/products/developer.php
such APIs for OPNET. However, the low-level APIs are Very[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

specific to a tool, require a considerable effort to learn and bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
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http://pysnmp.sourceforge.net
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the

are a primary example, that interact with several layers of http://projects.gnome.org/ORBiIt2/
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