The datasets generated for the MILCOM 2016 paper “Four Labeled Datasets to Enable Reproducible Cyber Research” are available using the links below.
Please cite the following paper when referencing these datasets:
- Bowen, Tom, Alex Poylisher, Constantin Serban, Ritu Chadha, Cho-Yu Jason Chiang, and Lisa M. Marvel. "Enabling reproducible cyber research-four labeled datasets." In MILCOM 2016, IEEE Military Communications Conference, pp. 539-544, 2016.
Datasets_A-E_Descriptions.pdf | Description | Full Dataset description document |
MD5 Checksum | acdaff8babef45780e486401b08f4cf0 | |
SHA1 Checksum | 933b82a6193d10bd09c08473ec9e721cbc4c2e82 | |
Size | 2.1 MB | |
dataSetAv1.7z | Description | ACS pseudo botnet - download |
MD5 Checksum | 8729b9ad158a749af496dd0f408e672f | |
SHA1 Checksum | fc086662528406bc151c277e9d4ce6c28cb75cb9 | |
Size | 841.9 MB | |
dataSetAv2.7z | Description | ACS pseudo botnet - download |
MD5 Checksum | ad7730b833c9e98968a515d320844d7d | |
SHA1 Checksum | 8ab571b967f11c64b38905c91a0f98776be49e42 | |
Size | 32.8 GB | |
dataSetBv1.7z | Description | ACS pseudo botnet - download |
MD5 Checksum | 82cc959c61a0a5190618d51d957ffdd7 | |
SHA1 Checksum | 4d54694b8dee9fda46e8cdb80e33ab4a061ab92e | |
Size | 7.3 GB | |
dataSetBv2.7z | Description | ACS pseudo botnet - download |
MD5 Checksum | 5c2faafcb45d2e01941f92987cca1d5a | |
SHA1 Checksum | dea8f5f82337275b5dcb062a33cb6d8ef2f3cc59 | |
Size | 33.6 GB | |
dataSetCv1.7z | Description | ACS pseudo botnet - website |
MD5 Checksum | af2a2c7b5afef45161f853ad9ed7791a | |
SHA1 Checksum | 25bf58fecfaf5fae4b9241556ccfe5c915ef6a5b | |
Size | 12.5 GB | |
dataSetCv2.7z | Description | ACS pseudo botnet - website |
MD5 Checksum | 12dc1aecec9749389c223f14cb52771c | |
SHA1 Checksum | b8b05bf091c038f90d403ca3e5d6936ec9ddf9cb | |
Size | 71.1 GB | |
dataSetDLamp.7z | Description | ACS pseudo botnet - LAMP variant |
MD5 Checksum | 433a896826279863b881282b69c064d3 | |
SHA1 Checksum | d50c41df7f1002928830a357ef5185a4acb15b84 | |
Size | 21.9 GB | |
dataSetDNJS.7z | Description | ACS pseudo botnet - Node.js variant |
MD5 Checksum | 02ee78a80b67b50931713e87298710f5 | |
SHA1 Checksum | 79a98d1edd7e67a59a871bd8d6300c142b9973dd | |
Size | 40.6 GB | |
dataSetEAggregator.7z | Description | Aggregator Attack |
MD5 Checksum | 5ca643a1adfbd481173017a01bc381dc | |
SHA1 Checksum | 257b9eb4c689f56d9f4af34b8bf96f4086c314f8 | |
Size | 44.2 GB | |
dataSetEBatteryDrain.7z | Description | Battery Drain Attack |
MD5 Checksum | 87f54dae6e99d74aa9727b03064abee6 | |
SHA1 Checksum | 39c5252647b6d5202ea93bb54e5ae11211dd8dd3 | |
Size | 10 GB | |
dataSetESlowloris.7z | Description | Slow Loris Attack |
MD5 Checksum | 794abd20332f20dc325b6c354d8f2d2f | |
SHA1 Checksum | fc8704480e045ffee6d8d64f224ab76c92c6fc0c | |
Size | 42.4 GB | |
dataSetESynFlood.7z | Description | Syn Flood Attack |
MD5 Checksum | 5f212841d6bc6948b2b04c68f5699b6b | |
SHA1 Checksum | 5da2f7fc99326c7fe9a95c9910f87196c1da3bc8 | |
Size | 28.5 GB | |
deliveredLabels.7z | Description | Data Set Labels |
MD5 Checksum | c1c2c60a9d84bbef932d983148775421 | |
SHA1 Checksum | 1ada01c47daedbd65c9c8c8f683b7a9b013397e2 | |
Size | 73.5 MB | |
utilities.7z | Description | Dataset Utilities |
MD5 Checksum | 38a008a0c42928bdad52bd3eba34355e | |
SHA1 Checksum | 941ea5ec94dcb979176975fb54ce1580ccb06022 | |
Size | 6 KB |